Search results for "Walker motifs"

showing 2 items of 2 documents

Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco c…

2012

NO has important physiological functions in plants, including the adaptative response to pathogen attack. We previously demonstrated that cryptogein, an elicitor of defence reaction produced by the oomycete Phytophthora cryptogea , triggers NO synthesis in tobacco. To decipher the role of NO in tobacco cells elicited by cryptogein, in the present study we performed a proteomic approach in order to identify proteins undergoing S-nitrosylation. We provided evidence that cryptogein induced the S-nitrosylation of several proteins and identified 11 candidates, including CDC48 (cell division cycle 48), a member of the AAA+ ATPase (ATPase associated with various cellular activities) family. In vit…

Models Molecular0106 biological sciencesProtein Conformation[SDV]Life Sciences [q-bio]Nicotiana tabacumATPaseMolecular Sequence DataCell Cycle ProteinsNitric Oxide01 natural sciencesBiochemistrycryptogeinFungal Proteins03 medical and health sciencesValosin Containing ProteinTobaccoAmino Acid Sequencenitric oxide (no)Molecular BiologyPlant Proteins030304 developmental biologyAdenosine Triphosphatases0303 health sciencesbiologyWalker motifsCell BiologyS-Nitrosylationcell division cycle 48 (cdc48)Biotic stressbiology.organism_classificationAAA proteinsProtein Structure TertiaryElicitorBiochemistryChaperone (protein)[SDE]Environmental Sciencesbiology.proteins-nitrosylationplant defence responses010606 plant biology & botanyBiochemical Journal
researchProduct

Effects of nucleotide binding to LmrA: A combined MAS-NMR and solution NMR study

2015

ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account…

Magnetic Resonance SpectroscopyBiophysicsATP-binding cassette transporterProtein dynamicsCrystallography X-RayBiochemistryLmrABacterial ProteinsNucleotide bindingMagic angle spinningSolution NMRNucleotidesChemistryWalker motifsCell BiologyNuclear magnetic resonance spectroscopyProtein superfamilyBiochemistryCyclic nucleotide-binding domainBiophysicsMAS NMRABC transporterMultidrug Resistance-Associated ProteinsMultidrug Resistance-Associated ProteinsHeteronuclear single quantum coherence spectroscopyProtein BindingBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct